
International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018 396
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Hybrid Algorithm for Approximate String Matching
to be used for Information Retrieval

Surbhi Arora, Ira Pandey

Abstract— Conventional database searches require the user to hit a complete, correct query denying the possibility that any legitimate
typographical variation or spelling error in the query will simply fail the search procedure. An approximate string matching engine, often
colloquially referred to as fuzzy keyword search engine, could be a potential solution for all such search breakdowns. A fuzzy matching
program can be summarized as the Google's 'Did you mean: ...' or Yahoo's 'Including results for ...'. These programs are entitled to be
fuzzy since they don't employ strict checking and hence, confining the results to 0 or 1, i.e. no match or exact match. Rather, are designed
to handle the concept of partial truth; be it DNA mapping, record screening, or simply web browsing. With the help of a 0.4 million English
words dictionary acting as the underlying data source, thereby qualifying as Big Data, the study involves use of Apache Hadoop's
MapReduce programming paradigm to perform approximate string matching. Aim is to design a system prototype to demonstrate the
practicality of our solution.

Index Terms— Approximate String Matching, Fuzzy, Information Retrieval, Jaro-Winkler, Levenshtein, MapReduce, N-Gram, Edit Distance

—————————— ——————————

1 INTRODUCTION
UZZY keyword search engine employs approximate
search matching algorithms for Information Retrieval (IR).
Approximate string matching involves spotting all text

matching the text pattern of given search query but with
limited number of errors [1]. The errors are expressed by a
metric, edit distance between the spotted text and the search
query text. This approach diverges from the exact string
matching, wherein the search query results return either no
text or either exactly matched text which is not approximated
in any way. Since text data is pervasive and finding some
specific information from variegated, inharmonious data
sources involves identifying database records approximately
similar to the base entity in order to achieve information
integration.

In this paper, comparative study of few string similarity
algorithms has been conducted, which perform "approximate
string search" to extract all information relevant to the given
search query from the underlying information pool as shown

in Fig. 1.

Fig. 1. Fuzzy Search results for query string, “noting”.

The fuzzy logic behind approximate string searching can
be described by considering a fuzzy set F over a referential
universal set U, characterized by a membership function,
m=µ(F). The membership grade of each element x ∈ U depends
on the value of m(x) which is a real number in the interval [0,1]
[2]. The membership grade can be regarded as edit distance
[3], such that, x ∈ U is,

1. exact match, if m(x) = 1
2. no match, if m(x) = 0
3. partial match, if 0 < m(x) < 1 (fuzzy member in F)

Key contribution areas of this study are:
1. Understand the domain of the project, that is Big Data

Analytics and decide technology platform used to
build the desired product i.e. Fuzzy Keyword Search
Engine.

2. Analyze a few known standard string matching
algorithms and choose the most suitable string
matching algorithm for the designing of the Fuzzy
Search Engine.

3. Devise a hybrid approach for approximate string
matching based on above comparative analysis.

2 HADOOP VS. JAVA IDE: PLATFORM FOR FUZZY
KEYWORD SEARCH ENGINE

Given a huge collection of dictionary words as underlying
information pool, analysis of one of the standard approximate
string matching algorithm, Jaro-Winkler Distance on a
common Java IDE such as NetBeans versus on Hadoop clearly
indicates that as the information pool increases, the execution
time increases by manifold on Java IDE as compared to on
Hadoop. The experimental observations, therefore conclude
that MapReduce paradigm in Hadoop is better for
voluminous data, since Mappers filter and transform input
data and Reducers aggregate mappers' output, allowing
parallel execution flow, thereby reducing the execution time

F

————————————————
• Surbhi Arora holds a bachelor’s degree in IT and is currently working as a

Software Engineer at Sprinklr, Gurgaon, India. PH- +91 9711177495. E-
mail: arora.94surbhi@gmail.com

• Ira Pandey holds a bachelor’s degree in IT and is currently working as a
Software Engineer at Accenture, Pune, India, PH- +91 9971225539. E-
mail: irap94@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018 397
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

[4]. Hence, Fuzzy keyword search engine is implemented
using Hadoop. Also, it was observed that, with a smaller
information pool, increase in number of reducers in Map-
Reduce Framework does not improve the performance of
Fuzzy Keyword Search Engine, as combining results of all
reducers becomes a time overhead.

TABLE 1
EXECUTION TIME - HADOOP VS. JAVA IDE

Fig. 2(a). Increase in execution time - Hadoop vs. Java IDE for up to 3
million words.

Fig. 2(b). Increase in execution time - Hadoop vs. Java IDE for up to 16
million words.

3 PROPOSED METHODOLOGY
3.1 Preliminaries
Edit Distance, d: Metric chosen to denote the similarity
coefficient of the two strings being matched. Also, d=1, if the
two strings match exactly; d=0, if there is no similarity
between them; and otherwise 'd' takes a decimal value in the
interval [0,1] depending upon their degree of match.
Fig. 3. Variations in String Distances, d, computed by comparing the given
strings with query string "Cosmo Kramer" using various approximate string
matching algorithms under study.

Threshold, t: Threshold, t acts as a filter to retrieve only
relevant information. In order to retrieve top-k matched
strings from a given string collection for a particular fuzzy
query, the retrievals are made out of the sub-string collection
that have string distance greater than or equal to the threshold
value set, i.e.,
 𝑑 ≥ 𝑡 (1)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018 398
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Strings with d< t are hence, pruned from the result set.

Fig. 4. Computation of String Distances, d, for strings in a given collection
against the query string 'Cosmo Kramer' using a standard approximate
string matching algorithm. Results are pruned in accordance with the
threshold, t is set to 0.80

This study comparatively analyses the performance of
some standard Edit-based and Token-based approximate
string matching algorithms primarily on the basis of two
parameters:

1. Quality of prediction, based on the relevance of
retrieved results.

2. Performance, determined by execution time of the
algorithm.

3.2 Measures for Quality of Prediction
The relevance of retrieved results is based on the values of
these accuracy measures - Precision (p), Recall (r) and F-
measure (f) [5].

1. Precision, p : proportion of retrieved records that are
relevant [6].

2. Recall, r : proportion of relevant records actually
retrieved [6].

3. F-measure, f : Harmonic mean of precision and recall.
Based on the given Fig. 5, accuracy measures are calculated as:

Fig. 5. Venn diagram: Accuracy measures for estimating 'quality of
prediction'.

𝑝 = (𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 ∩ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡)/𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 (2)

𝑟 = (𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 ∩ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡)/𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (3)

𝑓 = (2 × 𝑝 × 𝑟)/(𝑝 + 𝑟) (4)

3.3 Estimating Accuracy measures
Considering a word list containing around 0.4 million English
words, sorted alphabetically, as the data source, 15 query

words are picked and a list of 10 relevant word searches from
the data source (typographically similar to the query word) is
pre-assumed for each of the query word. For each query word,
string-distance, d is computed by executing the approximate
string searching algorithm against each single word in the
data source. Based on the string-distance (d) computed,
threshold (t) set and pre-assumed list of relevant words,
words in the data source are categorized into following:

1. relevant: If the word ∈ pre-assumed list of relevant
words

2. retrieved: If d ≥ t
3. retrieved ∩ relevant: If the word ∈ pre-assumed list of

relevant words and d ≥ t
4. retrieved ∩ irrelevant: If the word ∉ pre-assumed list

of relevant words and d ≥ t
5. irrelevant: If the word ∉ pre-assumed list of relevant

words
Precision, Recall and F-measures are calculated for each

query word case using "(2)", "(3)" and "(4)" respectively.
Accordingly, minimum, maximum and average values of
accuracy measures are computed for each approximate string
matching algorithm.

4 APPROXIMATE STRING MATCHING ALGORITHMS: AN
OVERVIEW

Approximate String Matching algorithms are broadly
categorized into edit-based and token-based measures [7].
Edit-based measures: Individual characters in the string are
considered and String Distance, d is measured as the
computation expense of converting one string to other.
Token-based measures: String is divided into n-grams, i.e.
substrings of consecutive characters each of length n and String
Distance, d is measured on basis of gram similarity between
both the strings.

TABLE 2
APPROXIMATE STRING MATCHING ALGORITHMS

SUMMARY

4.1 Levenshtein Distance
Given two strings, str1 and str2 of length l1 and l2
respectively, Levenshtein distance between the two strings
depends on the minimum number of insertion, deletion and
substitution operations required for transforming str1 to str2.
Number of substitutions is computed using "(5)" and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018 399
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Levenshtein distance is computed using "(6)" [8].
x ∈ str1 and y ∈ str2, at position t

𝑆 = 𝑀𝑖𝑛(𝑙1, 𝑙2) − ∑�∃𝑥,∃𝑦, 𝑡 𝑖𝑓 𝑥 = 𝑦 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 1

� (5)

𝐿𝑒𝑣(𝑠𝑡𝑟1, 𝑠𝑡𝑟2) = 𝑀𝑖𝑛(𝑙1, 𝑙2) − ∑ � ∃𝑥,∃𝑦, 𝑡 𝑖𝑓 𝑥 = 𝑦 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 1

� +

 𝐴𝑏𝑠(𝑙1 − 𝑙2) (6)

4.2 Jaro and Jaro-Winkler Distance
Given two strings, str1 and str2 of length l1 and l2
respectively, wherein,
m = number of matching characters,
t = number of transposed characters,
Jaro distance, 𝑑𝑗 can be calculated using "(7)". [7]

𝑑𝑗 = 1
3
� 𝑚
𝑙1

 + 𝑚
𝑙2

 +
𝑚−𝑡2
𝑚

 � (7)

Jaro-Winkler distance, 𝑑𝑤 can be calculated using "(8)", given,
[16]
l = prefix length (number of starting characters in both strings that
matched, max length = 4), and
p = prefix weight (default = 0.1),

𝑑𝑤 = 𝑑𝑗 + 𝑙𝑝�1 − 𝑑𝑗� (8)

4.3 Hamming Distance
Given two strings, str1 and str2 of equal length l, Hamming
Distance, HD is the minimum number of single character
substitutions to transform str1 to str2 [8].

𝐻𝐷 = ∑�∃𝑥,∃𝑦, 𝑡 𝑖𝑓 𝑥 = 𝑦 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 1

� (9)

4.4 N-Gram Approach
Given two strings, str1 and str2 of any lengths, N-Gram
similarity coefficient can be calculated using "(10)" [8], given,

n1 = number of N-Grams in str1,
n2 = number of N-Grams in str2, and
𝑛1 ∩ 𝑛2 = number of common N-Grams in str1 and str2, where,

N-Grams are defined as substrings of consecutive characters
each of length N.

𝑁 − 𝐺𝑟𝑎𝑚(𝑠𝑡𝑟1, 𝑠𝑡𝑟2) =
1

1 + 𝑛1 + 𝑛2 − 2 × (𝑛1 ∩ 𝑛2) (10)

4.5 Cosine Similarity
Cosine similarity measure is a token-based measure, where
the whole string is split either into words or into characters to
form a vector out of each string based on frequency of each
word/character in the string. Given two strings, str1 and str2,
cosine similarity can be expressed mathematically as, [9]

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠𝑡𝑟1��������⃗ , 𝑠𝑡𝑟2��������⃗) = 𝑐𝑜𝑠𝜃 =
 𝑠𝑡𝑟1��������⃗ . 𝑠𝑡𝑟2��������⃗

| 𝑠𝑡𝑟1 ���������⃗ | | 𝑠𝑡𝑟2 ���������⃗ |
 (11)

 𝑠𝑡𝑟1��������⃗ . 𝑠𝑡𝑟2��������⃗

| 𝑠𝑡𝑟1 ���������⃗ | | 𝑠𝑡𝑟2 ���������⃗ |
 =

 ∑ 𝑠𝑡𝑟1𝑖𝑛
𝑖=1 𝑠𝑡𝑟2𝑖

�∑ 𝑠𝑡𝑟1𝑖2𝑛
𝑖=1 × �∑ 𝑠𝑡𝑟2𝑖2𝑛

𝑖=1
 (12)

4.6 Jaccard Index
Given two strings, str1 and str2 of any lengths, Jaccard index, J
can be calculated using "(13)", given,

𝑛1 ∩ 𝑛2 = intersection of N-Grams in str1 and str2, and,
𝑛1 ∪ 𝑛2 = union of N-Grams in str1 and str2, and, [10]

𝐽(𝑠𝑡𝑟1, 𝑠𝑡𝑟2) =
|𝑛1 ∩ 𝑛2|
|𝑛1 ∪ 𝑛2|

 =
|𝑛1 ∩ 𝑛2|

|𝑛1| + |𝑛2| − |𝑛1 ∩ 𝑛2|
 (13)

4.7 Sorensen Coefficient
Given two strings, str1 and str2 of any lengths, Sorensen
coefficient, s can be calculated using "(14)", given,

𝑛𝑡 = number of character bigrams found in both strings,
𝑛𝑠𝑡𝑟1 = number of character bigrams found in str1, and
𝑛𝑠𝑡𝑟2 = number of character bigrams found in str2, [7]

𝑠 =
2𝑛𝑡

𝑛𝑠𝑡𝑟1 + 𝑛𝑠𝑡𝑟2
 (14)

5 COMPARATIVE ANALYSIS OF EXISTING APPROXIMATE
STRING MATCHING ALGORITHMS

5.1 Criteria for analyzing performance
1. Performance based on execution time
2. Performance based on accuracy measures: Precision,

Recall and F-measure as described in Fig. 5.

5.2 Plotting average execution time
Average execution time for standard edit and token based
approximate string matching algorithms is computed by
taking mean of execution times of sample runs for each
algorithm under study.

Fig. 6. Average execution time plot for various Approximate String
Searching algorithms

5.3 Plotting accuracy measures
Precision values are undefined, i.e. n/a if all search results are
pruned as their string-distances (d) are less than threshold (t)
set, 𝑑 < 𝑡. This can be inferred from "(2)".
Recall values are 0 if either all search results are pruned,
since, 𝑑 < 𝑡 or if none of the retrieved results belong to the
pre-assumed relevant word list. This can be inferred from
"(3)".

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018 400
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

F-measure values are undefined, n/a if the precision for the

corresponding search result is undefined. This can be inferred
from "(4)".

Fig. 7(a). Expected accuracy measures for threshold = 0.95

Fig. 7(b). Expected accuracy measures for threshold = 0.90

Fig. 7(c). Expected accuracy measures for threshold = 0.85

Fig. 7(d). Expected accuracy measures for threshold = 0.80

Fig. 7(e). Expected accuracy measures for threshold = 0.75

6 RESULTS AND DISCUSSION
6.1 What should be threshold value for safe pruning?
As the threshold value decreases, more results are retrieved
and hence precision decreases and recall rate of algorithm
increases. This can be inferred from "(2)" and "(3)". Referring to
the plotted accuracy measures for different threshold values,
0.90 is assumed to be the working threshold for the
algorithms. Accuracy measures for threshold 0.90 are depicted
in Fig. 7(b). Higher threshold values like 0.95 are not safe as
there is risk of pruning the desired searches. Moreover, with
lower thresholds, precision values stoop so low as even
undesired searches are retrieved to a great extent, depicted by
"(15)". Also, it was found that all algorithms except Hamming
Distance, yield string-distances of all relevant searches for a
given search string within this given threshold.

6.2 Which algorithms provide more relevant results?
Observations made from tabulated accuracy measures:

1. Levenshtein and N-Gram have higher precision rates
than Jaro Winkler and the rest.

2. Jaro Winkler has the maximum recall rate but lower
precision rates. Though it retrieves relevant searches in
the given threshold, but the problem is it retrieves too
many! This can be inferred from "(15)".

3. Jaro-Winkler, Levenshtein and N-Gram have better
accuracy rates than the rest.

4. Hamming distance has the worst since it needs lower
threshold values to retrieve results. For threshold 0.90,
its precision and f-measure values are undefined.

↓ 𝑝 =
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 ∩ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 ↑
 (15)

6.3 Which algorithms run faster?
Considering execution time for the algorithms: Jaro-Winkler,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018 401
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Levenshtein and N-Gram with fairly better accuracy measures
than the rest,

1. Jaro-Winkler has the least execution time as plotted in
Fig. 6.

2. Levenshtein falls in the mid-range and N-Gram has
slightly higher execution time.

7 DEVISED HYBRID APPROACH: LEVIGRAM
7.1 Computing Levigram similarity index
Levigram is hybrid of Jaro-Winkler, Levenshtein and N-Gram.
In case of Levigram and Levenshtein, string-distance, d
between two strings, str1 and str2, is computed using dynamic
programming from a tabular computation of matrix L(n, m).
The approach boils down to computing L(i, j) and C(i, j), ∀ i ∈
(0,n) and ∀ j ∈ (0,m), where,
str1[i] = N-Gram at position i in str1
str2[j] = N-Gram at position j in str2
C(i,j) = Cost for transforming str1[i] to str2[j]

𝐿(𝑖, 𝑗) = 𝐿𝑖,𝑗 = �
𝐶𝑖,𝑗 + 𝐿𝑖−1,𝑗−1 𝑖𝑓 𝑠𝑡𝑟1[𝑖] = 𝑠𝑡𝑟2[𝑗]
𝐶𝑖,𝑗 + min�𝐿𝑖−1,𝑗 , 𝐿𝑖,𝑗−1, 𝐿𝑖−1,𝑗−1� 𝑒𝑙𝑠𝑒

 (16)�

Levenshtein algorithm is operated on individual characters of
string, so N=1 for N-Gram, and cost for transforming is
uniform, i.e.

𝑐𝑜𝑠𝑡𝑖,𝑗 = �0 𝑖𝑓 𝑠𝑡𝑟1[𝑖] = 𝑠𝑡𝑟2[𝑗]
1 𝑒𝑠𝑙𝑒

� (17)

and, Levenshtein distance is calculated as,

𝐿(𝑖, 𝑗) = 𝐿𝑖,𝑗 = �
𝐿𝑖−1,𝑗−1 𝑖𝑓 𝑠𝑡𝑟1[𝑖] = 𝑠𝑡𝑟2[𝑗]

1 + min�𝐿𝑖−1,𝑗 , 𝐿𝑖,𝑗−1, 𝐿𝑖−1,𝑗−1� 𝑒𝑙𝑠𝑒
 (18) �

Levigram, devised hybrid algorithm, is operated on bi-grams
of string, so N=2 for N-Gram, and cost for transformation is
not uniform. Then, cost is estimated by computing matches,
𝑚𝑖,𝑗 and transpositions, 𝑡𝑖,𝑗, ∀ i ∈ (0,n) and ∀ j ∈ (0,m), using
Jaro-Winkler string-distance concept. Mismatches between
str1[i] and str2[i] are calculated using ("19") and as,.
𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠𝑖,𝑗 = min (|𝑠𝑡𝑟1|, |𝑠𝑡𝑟2|) − (𝑚𝑖,𝑗 − 𝑡𝑖,𝑗)
(19)
Cost is calculated as,

𝑐𝑜𝑠𝑡𝑖,𝑗 = �
0 𝑖𝑓 𝑠𝑡𝑟1[𝑖] = 𝑠𝑡𝑟2[𝑗]
𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠𝑖,𝑗
𝑁 − 𝐺𝑟𝑎𝑚

 𝑒𝑠𝑙𝑒
� (20)

and, Levigram distance matrix is computed as,

𝐿(𝑖, 𝑗) = �
𝐿𝑖−1,𝑗−1 𝑖𝑓 𝑠𝑡𝑟1[𝑖] = 𝑠𝑡𝑟2[𝑗]
𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠𝑖,𝑗

2
+ min�𝐿𝑖−1,𝑗 , 𝐿𝑖,𝑗−1, 𝐿𝑖−1,𝑗−1� 𝑒𝑙𝑠𝑒

(21)�

𝐿𝑒𝑣𝑖𝑔𝑟𝑎𝑚 𝐷𝑖𝑠𝑎𝑡𝑛𝑐𝑒 = 𝐿(𝑛,𝑚) = 𝐿[𝑛][𝑚] (22)

𝑆𝑖𝑚𝐿𝑒𝑣𝑖𝑔𝑟𝑎𝑚 =
1 − 𝐿[𝑛][𝑚]

min (|𝑠𝑡𝑟1|, |𝑠𝑡𝑟2|) + 1
 (23)

7.2 Comparative analysis of Execution Time
Fig. 8. Average execution time plot for various existing Approximate String
Searching algorithms vs. Levigram, devised hybrid approach

Though Levigram doesn't have the least execution time but its
dynamic approach beats Levenshtein and N-Gram.

7.3 Comparative analysis of Accuracy Measures

Fig. 9. Expected accuracy measures plot for standard Approximate String
Searching algorithms under study vs. Levigram, devised hybrid approach

7.4 Levigram : Psuedo Algorithm
Given two strings, a and b, algorithm Levigram retuns edit
distance bettween the two strings.

algorithm Levigram is
 input: strings a[1..length(a)], b[1..length(b)]
 output: float edit_dist
 nGram := 2
 a := "." + a
 b := "." +b
 n := a.length() - nGram + 1
 m := b.length() - nGram +1
 min_dist := min(a.length(),b.length())
 match_a : = ""
 match_b : = ""
 mRange := 0
let d[0..n+1, 0..m+1] be a 2-d array of integers, dimensions n+2,
m+2
if n = 0 || m = 0 then
 return 0.00;
for i := 0 to n inclusive do
 d[i, 0] := (float)i
for j := 0 to m inclusive do
 d[0, j] := (float)j
for i := 1 to n inclusive do
 a_i := a.substring(i-1, i-1+nGram)
 for j := 1 to m inclusive do
 b_j := b.substring(j-1, j-1+nGram)
 if a_i = b_j then
 cost := 0

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018 402
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

 d[i][j] := d[i-1][j-1] + cost
 else
 matches := getMatch(a_i,b_j)

transpositions := 0
 if getMissmatch(b_j,a_i) > 0 then
 transpositions := (getMissmatch(a_i,b_j)/
 getMissmatch(b_j,a_i))

missMatches := min_dist - (matches - transpositions)
 cost = missMatches/ (float)nGram
 d[i, j] := minimum(d[i−1, j−1] + cost, //substitution
 d[i, j−1] + cost, //insertion
 d[i−1, j] + cost) //deletion
levigram_edit_dist := 1-d[n][m]/(min_dist+1)
return levigram_edit_dist

function getMatch is
 input: strings a_comp, b_comp
 output: integer matches
matches := 0
mRange := max(a_comp.length(),b_comp.length())/2 - 1
for i := 0 to a_comp.length() inclusive do
 counter :=0
 while counter<=mRange & i>=0 & counter<=i inclusive do
 if a_comp.charAt(i)=b_comp.charAt(i-counter) inclusive do
 matches := matches +1
 match_a := match_a + a_comp.charAt(i)
 match_b := match_b + b_comp.charAt(i)
 counter := counter + 1
 counter :=1
 while counter<=mRange & i<b_comp.length() inclusive do
 if a_comp.charAt(i)=b_comp.charAt(i+counter) inclusive do
 matches := matches +1
 match_a := match_a + a_comp.charAt(i)
 match_b := match_b + b_comp.charAt(i)
 counter := counter + 1
return matches

function getMissMatch is
 input: strings a_comp, b_comp
 output: integer missMatches
transpositions := 0
for i := 0 to match_a.length() inclusive do
 counter :=0
 while counter<=mRange & i<match_b.length() & (counter+i)< match_b.length() inclusive do
 if match_a.charAt(i)=match_b.charAt(i+counter) &counter>0
inclusive do
 transpositions := transpositions +1
 counter := counter + 1
 counter :=1
return transpositions

8 CONCLUSIONS
Comparative study of existing approximate string matching
methods suggests that finding an unrivaled method with
highest accuracy measures is not feasible. Some methods have

high precision rates while others may have high recall rates.
Hybrid approach seems to fit best in this case, producing all
possible matches and pruning the undesired matches safely.
Levigram, devised hybrid algorithm is a composite method,
incorporating the attributes of both edit-based and token-
based string distance methods. Token-based methods are
likely to improve precision, since they operate on substrings of
consecutive characters, producing bordering results.
Moreover, the value of threshold could be adjusted to one's
requirement of how many matches one needs to filter. Since,
lowering the threshold, increases the number of matches
retrieved and vice versa.

ACKNOWLEDGMENT
The authors wish to thank Mrs. Neetika Bhandari, their
Faculty Advisor at Indira Gandhi Delhi Technical University,
Delhi, India, for her guidance and constant supervision much
required for completion of this study.

REFERENCES
[1] G. Navarro, ”A guided tour to approximate string matching”, ACM

Computing Surveys, vol. 33, no. 1, pp. 31–88, March 2001.
[2] S. Gottwald. "Logical Preliminaries: Basic Notations". Fuzzy sets and

fuzzy logic. Verlag Vieweg, Braunschweig, 1993, pp. 1-3.
[3] Esko Ukkonen, "Algorithms for Approximate String Matching*",

ELSEVIER, Information and Control vol. 64, no. 1-3, pp. 110-118,
January-March 1985.

[4] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler, "The Hadoop Distributed File System," Proc. IEEE 26th
Symp. Mass Storage Systems and Technologies (MSST '10), pp. 1-10,
May. 2010

[5] Tom Fawcett, "An introduction to ROC analysis", ELSEVIER, Pattern
Recognition Letters vol. 27, no. 8, pp. 861-874, July 2006,
doi:10.1016/j.patrec.2005.10.010.

[6] Patrick A.V. Hall, Geoff R. Dowling, "Approximate String Matching",
ACM Computing Surveys, vol. 12, no. 4, pp. 381–402, December
1980.

[7] M.Bilenko, R. Mooney, William W. Cohen, Pradeep Ravikumar, and
Stephen E. Fienberg, "Adaptive name matching in information
integration", IEEE Intelligent Systems, vol. 18, no. 5, Sep/Oct 2003,
doi:10.1109/MIS.2003.1234765.

[8] V.P. Sumathi, Dr. K. Kousalya, R. Kalaiselvi, "A Comparative study
on Syntax Matching Algorithms in Semantic Web", WSEAS
Transactions on COMPUTERS, EISSN: 2224 2872, vol. 4, 2015

[9] Anna Huang, "Similarity Measures for Text Document Clustering",
NZCSRSC 2008, April 2008, Christchurch, New Zealand.

[10] Shraddha Pandit, and Suchita Gupta, "A comparative study on
distance measuring approaches for clustering", IJORCS, vol. 2, no. 1,
pp. 29-31. 2011.

IJSER

http://www.ijser.org/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9670

	1 Introduction
	2 Hadoop vs. Java IDE: Platform for Fuzzy Keyword Search Engine
	3 Proposed Methodology
	3.1 Preliminaries
	3.2 Measures for Quality of Prediction
	3.3 Estimating Accuracy measures

	4 Approximate String Matching Algorithms: An overview
	4.1 Levenshtein Distance
	4.2 Jaro and Jaro-Winkler Distance
	4.3 Hamming Distance
	/4.4 N-Gram Approach
	4.5 Cosine Similarity
	4.6 Jaccard Index
	4.7 Sorensen Coefficient

	5 Comparative analysis of existing Approximate String Matching Algorithms
	5.1 Criteria for analyzing performance
	5.2 Plotting average execution time
	5.3 Plotting accuracy measures

	6 Results and Discussion
	6.1 What should be threshold value for safe pruning?
	6.2 Which algorithms provide more relevant results?
	6.3 Which algorithms run faster?

	7 Devised hybrid approach: Levigram
	7.1 Computing Levigram similarity index
	/7.2 Comparative analysis of Execution Time
	/7.3 Comparative analysis of Accuracy Measures
	7.4 Levigram : Psuedo Algorithm

	8 Conclusions
	Acknowledgment
	References

